Математика. Ґрунтовна підготовка до ЗНО

ГЕОМЕТРІЯ

Частина перша. ОПРАЦЮВАННЯ ТЕОРЕТИЧНОГО МАТЕРІАЛУ

Розділ II. ПОВТОРЕННЯ МАТЕРІАЛУ ЗА ПРОГРАМОЮ З ГЕОМЕТРІЇ 10-11 КЛАСІВ

Тема 31. ДЕКАРТОВІ КООРДИНАТИ У ПРОСТОРІ

Визначення декартових координат у просторі

Декартова система координат у просторі задається трійкою попарно перпендикулярних осей (вісь ОХ— вісь абсцис, ОУ — вісь ординат, OZ— вісь аплікат), які мають спільний початок О (початок координат) і однаковий масштаб уздовж осей.

Кожній точці простору за певним правилом ставиться у відповідність трійка чисел — абсциса, ордината та апліката (х; у, z), які називаються декартовими координатами точки. Ці координат визначаються в такий спосіб: через точку А проводимо три площини, паралельні координатним площинам YOZ;XOZ;XOУ. Із координатними осями ОХ, ОУ і OZплощини перетнуться в точках xA,yA, zA. Число х, абсолютна величина якого дорівнює довжині відрізка ОХA, називається абсцисою точки А. Це число буде додатним, якщо х належить додатній пів осі ОХ, і від’ємним, якщо лежить на від’ємній півосі.

Аналогічно визначаються ордината у та апліката z точки А.

Декартові координати в просторі записують у дужках поруч із буквеним позначенням точки А (х; у; z). причому першою завжди стоїть абсциса, другою — ордината, третьою — апліката

Для точок площини ХОУ апліката z дорівнює нулю, для точок площини XOZ — ордината у дорівнює нулю, для точок площини YOZ — абсциса х дорівнює нулю.

На рис. 1 точка А має координат 2; 3; 3, що записується так: А (2; 3; 3).

Будь-якій трійці чисел х, y, z відповідає лише одна точка простору А (х, у, z).

Рис. 1

Приклад 1. Задано точки A(1; 2; 3), B(0; 1; 2), C(1; 0; 0), D(1; 0; 2). Які із цих точок лежать: 1) у площині XOZ: 2) на осі ОХ; 3) у площині УOZ?.

Розв'язання

1. Якщо точка лежить у площині XOZ, то координата y дорівнює 0, у площині XOZ лежать точки С(1; 0; 0), D (1; 0; 2).

2. Якщо точка лежить на осі ОХ. то координат у і z дорівнюють нулю, отже, на осі ОХ лежить точка 0(1; 0; 0).

3. У площині УOZ лежить точка 5(0; 1; 2).

Відповідь: 1) С, D; 2) С; 3) 5.

Відстань між двома точками

Відстань між двома точками дорівнює квадратному кореню із суми квадратів різниць однойменних координат.

Відстань між двома точками в просторі

d = .

де d — відстань (рис. 2) між точкою А1, із координатами (х1; у1; z1) і точкою А2 із координатами (х2; у2; z2).

Рис. 2

Приклад 2. Задано точки А (1; 2; 3), В (2; 3; 1), С (3; 1; 2). Знайдіть периметр трикутника AВС.

Розв’язання

Оскільки АВ = = , AC = = , BC = = .

то Р∆АВС = АВ +ВС +АС = 3 .

Відповідь: 3 .

Координати середини відрізка

Координати середини відрізка дорівнюють півсумі відповідних координат його кінців.

Координати середини підрізка в просторі

Координати (хС; уС; zС.) точки С, що є серединою відрізка, визначаються за формулами

xC = ; xC = ; xC = .

де (x1; y1; z1) і (x2; у2; z2) — координати точок А1 і А2, що є кінцями відрізка (рис. 3).

Рис. 3

Приклад 3. Знайдіть координати точки С — середини відрізка АВ, якщо А (1; 2; 3), В (-3; 2; 1).

Розв’язання

Оскільки А (1; 2; 3), В (-3; 2; 1) і АС = СВ, то

xC = = = -1; yC = = = 2; zC = = = 2;

Отже, С (-1; 2; 2).

Відповідь: С (-1; 2; 2).

Рівняння сфери

Якщо в просторі задано деяку точку з координатами С (а; b; с), що є центром сфери, а також радіус R (рис. 4), то рівняння сфери має вигляд

(x - a)2 + (y - b)2 + (z - c)2 = R2.

Якщо центром сфери є початок координат (рис. 5), то маємо

x2 + y2 + z2 = R2

Рис. 4

Приклад 4. Складіть рівняння сфери з центром у точці В (1; 1; 3), якщо відомо, що сфера проходить через точку М (2; 0; -1).

Розв’язання

Знайдемо радіус R сфери

R = BM = = .

Рис. 5

Ураховуючи, що центр сфери міститься в точці В(1; 1; 3), а радіус R сфери дорівнює , матимемо рівняння сфери (х - 1 )2 + (у - 1 )2 + (z - 3)2 =18.

Відповідь: (x - 1 )2 + (x - 1 )2 + (x - 3)2 = 18.

Перетворення фігуру просторі

Симетрія (рис. 6)

Точки\ Симетрія відносно

А (1; 1; 1)

А(x; у; z)

точки О

А1 (-1;-1;-1)

А1 (-х; -у; -z)

осі х

А2 (1;-1;-1)

A2 (х; -у; -z)

осі у

А3 (-1; 1; -1)

А3 (-х; у; -z)

осі z

A4 (-1; -1; 1)

A4 (-х; -у; z)

площини ху

A5 (1; 1; -1)

A5 (x; y;-z)

плошини xz

A6 (1; -1; 1)

A6 (x;-y; z)

площини yz

A7 (-1; 1; 1)

A7 (-x; y; z)

Паралельне перенесения

Гомотетія відносно точки О

Рис. 6

Виконайте тест

Завдання 1—8 мають по п’ять варіантів відповіді, серед яких лише один правильний. Виберіть правильну, на Вашу думку, відповідь і позначте її у бланку А.

1. Знайдіть відстань від точки А (1; 2; 3) до початку координат.

А

Б

В

Г

Д

інша відповідь

2. Дано точку М(-1; 2; 3). Укажіть координати точки К, симетричної точці М відносно точки N (2; 5; 4).

А

Б

В

Г

Д

(-4;- 1; 2)

(3; 3; 1)

(1; 7; 7)

(5; 8; 5)

інша відповідь

3. Ортогональну проекцію відрізка з кінцями у точках А (-1; 0; 5) і В (-1; 0; 8) на координатну площину XY є ....

А

Б

В

Г

Д

пряма

промінь

відрізок

точка

фігура, що відрізняється від зазначених

4. Знайдіть координати точки М, відносно якої симетричні точки Е (-3; 5; 7) і F (-9; 6; 1).

А

Б

В

Г

Д

(-6; 7; 4)

(-12; 14; 8)

(0; 0; 0)

(3; 1; 3)

інша відповідь

5. Знайдіть відстань від точки А (2; 3; -6) до координатної площини XY.

А

Б

В

Г

Д

-6

2

3

6

7

6. Задано точки А (1; 2; 3), В (2; 3; 1), С(3; 1; 2). Знайдіть периметр трикутника АВС.

А

Б

В

Г

Д

2

12

7. Задано точки М(-4; 7; 0) і N (0; - 1; 2). Знайдіть відстань від початку координат до середини відрізка MN.

А

Б

В

Г

Д

2

5

8. Знайдіть координати вершини D паралелограма ABCD, якщо координати трьох інших його вершин відомі: А (1; 3; 2), В (0; 2; 4), С (1; 1; 4).

А

Б

В

Г

Д

D(2; 1; 2)

D(1; 2; 2)

D(2; 2; 1)

D (2; 2; 2)

інша відповідь

У завданні 9 до кожного з чотирьох рядків інформації, позначених цифрами, виберіть один правильний, на Вашу думку, варіант, позначений буквою. Поставте позначки в таблицю відповідей до завдань на перетині відповідних рядків (цифри) і колонок (букви).

9. Дано точку А(1; 2; 3). Установіть відповідність між геометричними перетвореннями точки А (1—4) та координатами її образу при цих перетвореннях (А—Д).

1

симетрія відносно площини XOY

А

A1(1; -2; 3)

2

симетрія відносно початку координат

Б

А2( 1; 2;-3)

3

симетрія відносно осі OZ

В

A3(- 1; - 2; 3)

4

симетрія відносно площини XOZ

Г

A4(- 1; 2; 3)



Д

A5(- 1; - 2; - 3)

Розв’яжіть завдання 10—12. Одержані відповіді запишіть у бланку А.

10. Знайдіть довжину медіани АМ трикутника АВС, якщо А( 1;- 1; 1), В( 1; 7; 1), С(7;-1; 1).

11. Точка А(1; 0; 2) при паралельному перенесенні переходить у точку В, а точка D(- 1; 0; 0) у точку С. Знайдіть координати точки D, якщо C(1; 0; 4). У відповідь запишіть суму координат отриманої точки.

12. Знайдіть площу трикутника ABC, якщо А(- 3; 1; - 1), В(- 2; 1; - 1), С(- 3; 2; - 1).

Бланк відповідей А

У завданнях 1-9 правильну відповідь позначайте тільки так:

У завданнях 10-12 відповідь записуйте тільки десятковим дробом, враховуючи положення коми, по одній цифрі в кожній клітинці.