Математика. Ґрунтовна підготовка до ЗНО
ГЕОМЕТРІЯ
Частина перша. ОПРАЦЮВАННЯ ТЕОРЕТИЧНОГО МАТЕРІАЛУ
Розділ І. ПОВТОРЕННЯ МАТЕРІАЛУ ЗА ПРОГРАМОЮ З ГЕОМЕТРІЇ 7-9 КЛАСІВ
Тема 13. РОЗВ’ЯЗУВАННЯ ДОВІЛЬНИХ ТРИКУТНИКІВ
Теореми синусів і косинусів
Теореми косинусів. Квадрат будь-якої сторони трикутника дорівнює сумі квадратів двох інших сторін без подвоєного добутку цих сторін на косинус кута між ними.
Наприклад: у ∆ABC (рис. 1)а2 = с1 + b2 -2bc cosa, b2 = а2 +с2 -2ас cos β, с2 = а2 + b2 - 2ab cosγ.
Теореми синусів. У довільному трикутнику відношення будь-якої сторони до синуса протилежного кута стале і дорівнює діаметру описаного
навколо нього кола (рис. 2):
= = =2R.
Рис. 1
Варто пам’ятати, що синуси суміжних кутів рівні, а їх косинуси — протилежні числа:
sin(180° - a) = sina, cos(180° - a) = - cosa.
Рис. 2
Poзв’язyвання трикутників
Розв’язуванням трикутників називається знаходження всіх його шести елементів (тобто трьох сторін і трьох кутів) за будь-якими трьома даними елементами, що визначають трикутник.
Розгляньмо три задачі на розв’язування трикутників. При цьому будемо користуватися такими позначеннями для сторін трикутника ABC: АВ = с, ВС = а, СА = b (див. рисунок 1).
Задача 1. Дано: a, b, ∠С. Знайти: с, ∠А, ∠В (розв'язування трикутника за двома сторонами і кутам між ними).
Розв’язання
За теоремою косинусів знаходимо с:
c = .
Користуючись теоремою косинусів, маємо:
cos ∠A = , ∠А = arcos = .
Далі ∠В = 180° - ∠А - ∠С.
Задачи 2. Дано: а, ∠В, ∠С. Знайти: ∠А, b, с (розв'язування трикутника за стороною і двома прилеглими кутами).
Розв’язання
∠А — 180° - ∠В - ∠С. За теоремою синусів знаходимо b і с:
b = a; c = a.
Задача 3. Дано: а, b, с. Знайти: ∠А, ∠В, ∠С (розв'язування трикутника за трьома сторонами).
Розв’язання
Користуючись теоремою КОСИНУСІВ, знаходимо:
cos ∠A = , звідси ∠А = arcos = .
Аналогічно знаходимо АВ. Тоді АС = 180° - ∠А - ∠В.
Виконайте тест
Завдання 1—8 мають по п’ять варіантів відповіді, серед яких лише один правильний. Виберіть правильну, на Вашу думку, відповідь і позначте її у бланку А.
1. Дві сторони трикутника дорівнюють V3 см і 1 см, а кут між ними — 30°. Знайдіть третю сторону трикутника.
А |
Б |
В |
Г |
Д |
1 см |
см |
см |
2 см |
3 см |
2. Виміряти відстань безпосередньо між точками А і В перешкоджає ставок. Для знаходження відстані АВ виміряли відстані від точок А і В до певної точки С та кут АСВ. Обчисліть відстань АВ. якщо були одержані такі результати вимірювань: АС = 30м, ВС = 50 м, ∠ACB = 120°.
А |
Б |
В |
Г |
Д |
90 м |
85 м |
80 м |
75 м |
70 м |
3. Сторони трикутника дорівнюють 1 см, 3 см і 5 см. Знайдіть найбільший кут трикутника
А |
Б |
В |
Г |
Д |
90° |
120° |
135° |
150° |
175° |
4. Сторони трикутника, одна з яких удвічі більша за другу, утворюють 120°, а довжина третьої сторони дорівнює 3 . Знайдіть найменшу сторону трикутника.
А |
Б |
В |
Г |
Д |
1 |
2 |
3 |
4 |
5 |
5. Сторона трикутника дорівнює 20 см, а протилежний кут — 150°. Знайдіть радіус кола, описаного навколо трикутника.
А |
Б |
В |
Г |
Д |
30 см |
25 см |
20 см |
15 см |
10 см |
6. Два кути трикутника дорівнюють 30° і 45°. Знайдіть сторону, протилежну куту 30°, якщо сторона, протилежна куту 45°, дорівнює см.
А |
Б |
В |
Г |
Д |
1 см |
2 см |
3 см |
см |
2 см |
7. У рівнобедреному трикутнику основа дорівнює я, а кут при основі — 26- Знайдіть бісектрису, проведену до бічної сторони.
А |
Б |
В |
Г |
Д |
8. Якщо кути трикутника відносяться як 1 : 2 : 3, то відношення відповідних сторін трикутника є таким
А |
Б |
В |
Г |
Д |
1 : 2 : 3 |
1 : : |
1 : 2 : |
1 : : 2 |
1 : : 3 |
У завданні 9 до кожного з чотирьох рядків інформації, позначених цифрами, виберіть один правильний, на Вашу думку, варіант, позначений буквою. Поставте позначки в таблицю відповідей до завдань на перегині відповідних рядків (цифри) і колонок (букви).
9. Установіть відповідність між виразом (1—4) та його числовим значенням (А—Д).
1 |
sin 135° |
А |
- |
2 |
cos 135° |
Б |
|
3 |
cos 150° |
В |
- |
4 |
cos 180° |
Г |
0 |
Д |
-1 |
Розв’яжіть завдання 10—12. Одержані відповіді запишіть у бланку А.
10. Дві сторони трикутника дорівнюють см і 1 см, а кут між ними становить 135°. Знайдіть третю сторону (у см).
11. Сторони трикутника дорівнюють 4 см, 7 см, 5 см. Знайдіть кут (у градусах), який лежить проти найменшої сторони.
12. Дві сторони трикутника дорівнюють 7 см і 11 см, а медіана, проведена до третьої сторони, дорівнює 6 см. Знайдіть третю сторону (у см).
Бланк відповідей А
У завданнях 1-9 правильну відповідь позначайте тільки так:
У завданнях 10-12 відповідь записуйте тільки десятковим дробом, враховуючи положення коми, по одній цифрі в кожній клітинці.